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ON THE BANACH SPACES OF FUNCTIONS
WITH BOUNDED UPPER MEANS

KA-SING LAU

We consider the Banach space ~^?V(R) of functions with
bounded upper means. A detailed study is made of the ex-
tremal structure of the closed unit sphere, the dual space
and the representations of the bounded linear functionals on

1* Introduction* In his celebrated paper on generalized har-
monic analysis [13], Wiener introduced the following integrated
transformation

(1.1) β(tt)=l.i.m. — ( \ + )IW*m dx + — \ f(x)- -dx9

A-*™ 2π \J-Λ J i/ —ix 2π J-i — ix

where / is a complex valued Borel measurable function on R which

S oo

I f(x) |2/(1 + x2)dx < co. By using a deep Tauberian
— oo

theorem, he showed that if either limit exists, then

(1.2) lim — Γ I f(x) \2dx = lim J L Γ 18(u + λ) - s(u - h) \2du .
r_>oo 2T J-T Λ.-̂ O+ 2h J-oo

The formula has important applications in studying physical phe-
nomena such as white light, noise, and turbulence where ordinary
harmonic analysis is not applicable [2], [12], [13].

Unfortunately, the class W^\R) of Borel measurable functions
\f(x)\2dx exists is not closed under

-T

addition. It is natural to consider a larger linear space which con-
tains the above nonlinear space of functions. In [11], Marcinkiewicz
defined the class ^€P(R), 1 ^ p < oo 9 as the set of Borel measurable
functions / with

/ I CT \ijp

||f\\ = l i m ί — \ \f(x)\pdx) < °° .

By identifying functions whose difference has zero norm, he proved
that {^£rp{R), || ||) is actually a Banach space. The space had been
studied by many authors in the theory of almost periodic functions
and generalized harmonic analysis (e.g., Besicovitch [4], Bohr and
Folner [6], Bertrandias [3] and Lau and Lee [10]). In [10], it was
shown that the transformation defined in (1.1) can be extended to
an isomorphism from ^€2{R) onto the space T*2(R) of functions with
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bounded quadratic variations (i.e., | |s | | = lim(l/2fe I \s(u + h) —

) l/2 \ \ fc-*0+ \ J -oo

< oo, seT\R)\. Note that Wiener's identity (1.2)
implies that transformation (1.1) is an isometry on *W\R). The
theorem revealed that ^£rp{R) and °ΓP{R) are interesting spaces and
further study is desirable. In this paper, we concentrate on two
topics, viz., the extremal structure of the closed unit sphere in

and the representations of functionals on
In § 3, we prove

THEOREM 3.8. Let 1 < p < oo and let fe^fp(R) with \\f\\ = 1.
Suppose there exists an increasing sequence {Tn) which diverges to
oo, with {Tn+1/Tn} bounded and l i m ^ 1/2ΓΛ Γ* \f(x)\pdx = 1. Then
f is an extreme point of the closed unit sphere S{tp{R))

In particular, every function in W"P{R), 1 < p < oo, is an ex-
treme point of S(^tp(R)). A partial converse of the above theorem
is also given (Theorem 3.10). For p — 1, we show that S(^€\R))
does not have any extreme points (Theorem 3.11).

In order to study the dual space of ^£P{R), it is convenient
to make use of the following spaces:

MP(R) = j / : / i s Borel measurable, | | / | | = sup (— \f\p) < ool ,

Ip(R) - [feMp(R): Π m ^ j ^ \f\p = θ} .

We will identify ^£P(R) with the quotient space MP(R)/P(R). For
1 < p < oo, we show that MP(R) is the second dual of IP{R) and
MP(R)* = P(R)* (B Ip(Ry, with ^P(R)* isometric isomorphic to
P(R)L. By using a method of Cwikel [7] and the theorem of Bishop
and Phelps [5], we will give concrete representations of functionals
on P(R) and ^£P{R) (Theorem 4.6, Theorem 5.2).

THEOREM. Suppose that 1 < p < oo and 1/p + 1/g = 1.
( i ) If I eP(R)*, then there exists a ψeMq(R) and a countably

additive, positive, bounded regular Borel measure on [1, oo) such
that for all feP(R),

(1.3) (I, /> - j ~ (A. £ r f{x)f{χ)dx)dμ{T) .

(ii) There exists a {norm) dense subset Dζ=^€p(R)* such that
each I in D can be represented as in (1.3) with ψ 6 ίy/ίq{R) and μ a
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finitely additive, positive, bounded regular Borel measure on [1, oo)
concentrated at oo.

We are unable to represent every functional in ^#%R)*. How-
ever, if we consider the subspace ,yfίp(R), the .^^-regular functions
defined by

^ * ( Λ ) - \fe^//%R): l im 1 Γ + 1 \f\p = θ

we can show that (Theorem 5.5).
(iii) Each I e ^fr

p(R)* can be represented as in (1.3), where μ
is the same as in (ii) and ψ is a Borel measurable function on
[1, oo) x R with ψ(T, -)e^/fr

q(R) for each Te[ l , oo).

We remark that the representations in (i), (ii), (iii) are not
unique. Our paper is organized as follows: in § 2, we list some
relevant properties of Banach space theory and prove some elemen-
tary results for the spaces MP(R), P(R) and ^P*(R). In § 3, we
study the extreme points of S(MP(R)) and S(^?P(R)). In § 4, we
show that P(R)** = MP(R) and part (i) of the above theorem. These
results are used in § 5 to prove part (ii) and (iii) of the theorem.

The author would like to express his gratitude to Professor
Masani for bringing his attention to this subject and for many
helpful discussions and comments.

2* Notations and basic properties* Let X be a Banach space
and let S(X) = {feX: | | / | | ^ 1 } be the closed unit sphere of X.
X* will denote the dual space of X. An ί e X * is called a norm
attaining functional if there exists an fe S(X) such that <7, /> = || 11|.
The well known theorem of Bishop and Phelps [5] states that

The set of norm attaining functionals on X is dense in X*.
For any closed subspace Y of X, let X/Y be the quotient space and
let Y1 be the annihilator of Y. It is elementary that (X/Y)* is
isometrically isomorphic to Y1.

A Banach space X is called uniformly convex [8] if

_ i L L ± M : \\f-g\\^ε,f,geS(X)\ , ε>0

is a strictly positive function on R+, δ( ) is called the modulus of
convexity of X. If (Ω, μ) is a measure space, it is known that
LP(Ω, μ)f 1 < p < oo, is uniformly convex and that δ( ) depends only
on ε and p and is independent of the underlying measure space.

Let X be a uniformly convex space. It follows directly from
the definition that if /, geS(X) with | | / | | = 1 and | | / - g\\ ^ ε, then
I (lf9 g) I ̂  1 — 2δ(ε) where lf is a norm one functional on X and
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attains its norm on /. We will need the following slightly stronger
statement:

LEMMA 2.1. Let X be a uniform convex space with modulus of
convexity δ( ). Suppose that given ε > 0, there exist f, g in S(X)
and lfeS(X*) such that \\f - g\\ ^ ε, 1 - e/2 ^ | | / | | ^ 1 and lf

attains its norm at f/\\f\\. Then \ (lf, g) | ^ 1 - 2δ(e/2).

Throughout, we shall assume that / is a complex valued Borel
measurable function on R. Given a positive Borel measurable func-
tion w(x), we will use LP(R, w(x)dx) to be the Banach space of Borel

\f(x)\pw(x)dx) < oo.
For a locally integrable function /, we define

Let MP(R) and F(R) be defined as in the introduction with | | / | | =
sup^^co A(T, \f\p)1/p. It is known that M\R)^L\R, dx/(l + x2)) [14].
We refer to [10] for the following result.

PROPOSITION 2.2. Let 1 <; p < <*>, then for any a > 0, MP(R) g
Lp(Rf dx/d + \x\1+a)).

PROPOSITION 2.3. Let 1 ^ p < oo, then
( i ) LP{R) is a dense subspace in IP(R) and IP(R) is separable]
(ii) IP(R) contains a subspace isomorphic to cQ.

Proof. We omit the simple proof of (i). To show that IP(R)
contains a c0, we proceed as follows: let n1 = 1, f — 41/pX[lfi] and
choose for k > 1, nk and fk such that I < w 1 + l < w 2 < < nk^ +
1 < nk9 Λ = (2(wfc + l ) ) 1 7 * ^ , . ^ ] and

fc 2

Clearly, ||/ fc | | = 1. We claim that the subspace generated by {fk} is
isomorphic to c0. If {ck} is a sequence in c0 such that sup*. | ck \ = 1,
then for any T, we can find a & such that nk ^ T < nk+1. Thus by
our construction of {fk},

(T, \±cjk

k

2

Hence 1 £ ||Σ?=i^ΛII ^ 31/p for any {ck} in c0 with supA |c*| = 1 and
the claim is proved.
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Let ^£rp{R), 1 <J p < oo be the set of measurable functions on
R such that | | / | | = ί E Γ . M A(T9 \f\ψp< <*>. By identifying func-
tions whose difference has zero norm, ^€P(R) is a Banach space [11].
Let W~P{R) be the set of fe^fp{R) such that l i m ^ A(Γ, \f\p)
exists. Note that <WP{R) is a nonlinear subspace. The following
identification of ^fp{R) will be very useful for us. The proof is
in [10].

PROPOSITION 2.4. is isometric isomorphic to MP(R)/P(R)
under the natural identification.

PROPOSITION 2.5. Λ€P{R) contains a subspace isomorphic to Γ°.
Consequently, ^fp(R) is nonseparable and nonrefiexive.

Proof. Let a, = 0, bλ = 1 and an - 2W6Λ_1, 6Λ = 2nan. Then

Let {JT^nex be a partition of the set of natural number N such
that each ^ n is an infinite set. Let fn = 2Σfce/J[βilifc]ί n ° t e that
lim^^ A(T, \fn\

p) = 1 for each ^. If {cn} is a sequence such that
supΛ |cn | = l, then it is clear that 1 ^ ||Σ£UC*ΛII F101* e a c ^ >̂
there exists a k such that ak ^ T < ak+1. Hence

AIT, Σ-

Thus 1 ^ ||Σ»=icw/«ll ^ 2ι/ί> and this induces an isomorphism from
Z°° onto the subspace generated by {/J in

Let BPAP be the class of (Besicovitch) almost periodic functions,
the ^^^-closure of the set of trigonometric polynomials Yjt=iake

itk{'\
tkeR. It is known that BPAP is a closed subspace of ^~p(jβ) ([6,
p. 45]). For the case p — 2, we can define an inner product by

(/,</) = Km
T

f,geB2AP.

This inner product induces a norm on B2AP which coincides with
the ^ ^ n o r m . It follows that ^/έ\R) contains a nonseparable
Hubert space (since /*(•) = e ί ί ( ) eB2AP for all ίeΛ).
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PROPOSITION 2.6. For 1 < p < oo, ^P{R) contains a nonsepa-

rable reflexive Banach space.

Proof. It follows from the definition of BPAP and the Holder
inequality that for feBpAP, geBqAP, 1/p + 1/q = 1, fgeB'AP,
hence lirπr^ A(T, fg) exists. By defining (g, /> = lim^o, A(Tf fg),
we can show that (B9AP)* = BqAP and (BqAP)* = BPAP. Hence,
BPAP is reflexive. Observe that it is also nonseparable. This proves
the proposition.

3* Extreme points* Let K be a convex subset in a linear
space X. feK is called an extreme point of i£ if for any g,heK
such that / = Xg + (1 - λ)ft, 0 < λ < 1, then / = g = ft. The defini-
tion is equivalent to the statement: VgeX, f±geK implies that

L E M M A 3.1. Let feMp(R), l ^ p < oo. Tft e ^ A(T, \f\p) = Ifor

all T ^ 1 i / αwd o ? % i / \f(x)\p + | / ( - x ) | p = 2 for almost all x ^ l .

Proof. The sufficiency is obvious. To prove the necessity,

observe that A(Γ, \f\p) = 1/2T Γ \f\p is absolutely continuous on T.
J-T

Differentiation yields that

= 0 a.a.

and this implies \f(x)\p + \f(-x)\p = 2 for almost all α? ̂  1.

THEOREM 3.2. Lei 1 < p < oo α^d let feS(Mp(R)).
( i ) Suppose there exists a c > 0 cmd α sequence {Tn} diverging

to oo ^^ft A(Tnt \f\p)1/p > 1 - δ((c/Tn)
υp), where δ( ) is ίftβ modulus

of convexity of Lp. Then f is an extreme point of S(MP(R)).
Conversely,

(ii) Suppose f is an extreme point of S(MP(R)). Then for
any c > 0, there exists a sequence {Tn} diverging to oo such that

A(τn,\f\ψp>i-(c/τnγ
/p.

REMARK. Geometrically, condition (i) says that if there exists
a sequence {Tn} such that A(Tn, | / | p )—>1 sufficiently fast, then / is
an extreme point of S(MP(R)).

Proof. ( i ) Suppose there exists a g 6 MP(R) such that (| f±g\\^l

and g Φ 0 on [-Γ o, TQ] for some To > 0. Let c = Γ° \g\p. The

uniform convexity of Lp([-T, T], dx/2T), T > TQ and the fact that
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1/2Γ \\\(f + 9) ~(f-9)\p^ c/T yield A(T, I / I T 2 ' ^ 1 - 8{{c/TYp).

This is a contradiction.
Suppose statement (ii) is false. Then there exists a c > 0 such

that for T>T0, A(T,\f\ψ* + (c/Ty»£l. If g = (2c)1/'Z[ΓθfΓo+1],
then

/ | T ' + (c/T)1'* £ 1 .

This implies / is not an extreme point of S(MP(R)).

COROLLARY 3.3. Let 1 < p < <^> and let feMp(R) such that
I/(«) l p+ !/(-») lp = 2 a.e. Then f is an extreme point of S(MP(R)).

Proof. The result follows directly from Lemma 3.1 and Theorem
3.2.

Clarkson proved that on Lv, the modulus of convexity satisfies

3(e) =

8 - 8

[8, p. 149]. By considering ε = (2c/T)1/p for some c > 0, the follow-
ing results are obtained:

COROLLARY 3.4. Let 2 ̂  p < <^ and let feS(Mp(R)). Suppose
there exists a c > 0 and a sequence {Tn} diverging to °° such that
A(Tn, \f\p) > 1 - (c/ΓJ. Then f is an extreme point of S(MP(R)).

COROLLARY 3.5. Let 1 < p < 2 αwd Zeί feS(Mp(R)). Then the
same conclusion holds if we replace the above inequality by
A(Tn,\f\ψp>l-(c/Tnr

p.

For the case p ~ 1, we have

THEOREM 3.6. S(M\R)) contains no extreme point.

Proof. Let /eS(AP(Λ)) and | | / | | = 1. If J \f\ = a> 0, by the

fact that L1 contains no extreme point, we can find a nonzero g

which vanishes outside [ — 1,1] and \ | / ± g\ — a. Hence

A(T,\f±g\)£l for all Γ ^ l
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and / is not an extreme point of SiM^R)). If I | / | = 0, choose

To such that for 1 ^ T ^ To,

By the same argument as about, we can find a g such that 0 <

\g\ ^ 1/2, g vanishes outside [— To, To] and

Γ° \f±g\ = Γ° | / | .
J - Γ 0 J - Γ 0

Again we have A(T,\f±g\)^l for all T ^ 1 and / is not an
extreme point of S(M\R)).

The argument in Theorem 3.2 and Theorem 3.6 also implies the
following result.

PROPOSITION 3.7. For 1 ^ p < oo, S(P(R)) does not contain an
extreme point.

In the rest of this section, we will consider the extreme points
of

THEOREM 3.8. Let 1 < p < oo α?ιcί Zβί feS(^p(R)). Suppose
there exists a sequence {Tn} diverging to °o, such that {Tn+JTn} is
bounded and lim^^ A(Tn, \f\p) = 1. Then f is an extreme point of

Proof. Suppose g in ^*{R) is such that Π m ^ A(T, \ f± g \p) ̂  1.
We claim that l im^^ A(Tn, \g\p) = 0 where {Tn} is the sequence in
the hypothesis. For otherwise, by passing to subsequence if neces-
sary, we may assume that A(Tn, \g\p) ^ ε for some ε > 0. For each
n, consider /, f± g as elements of Lp([-Tn, Tn], dx/2Tn). The uni-
form convexity of the ZAnorm implies that there exists a δ(ε) > 0
such that A(Tnf \f\p)<l-δ. This contradicts the hypothesis that
l i m ^ A(Tn, \f\p) = 1 and the claim is proved. If T > 0, then Tn ^
T < Tn+1 for some n. Hence

The boundedness of {Tn+1/Tn} implies that the last term tends to 0
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as T-+oo. Therefore \\g\\ — 0 and / is an extreme point of

COROLLARY 3.9. Let 1 < p < oo α ^ d Zβί fe Ύ/"\R) with \\f\\ = 1.
/ is αw extreme point of S(^

It is easy to construct an extreme point of S(^ί/p(R)) which is
not in WP(R). For example, let 0 < a < b < 1 and let {an} be a
sequence such that aι — 1, α%6 + 1 < α n f l α and lim%_>O0 a% = oo. Let

1

0

((δ

1

+ 1) - a)1/p ,

X

an

b

b

< a

£\χ

<\x

+ 1 <

\<a

< a

< x\

nb

<

+
a

1

n+ιa .

Then we have A(Γ, | / | p ) ^ 1 for all Γ > 0, and A(Γ, | / | p ) = 1 for
Te R\\J^i (otna, anb + 1) and A(anb, \f\p) = a/b < 1. This shows t h a t

feS(^€p(R))\Wp(R) and / satisfies the condition in Theorem 3.8,
hence it is an extreme point.

In the following, we will give a partial converse to Theorem
3.8.

THEOREM 3.10. Let 1 < p < oo and let feS(^p(R)). Suppose
there exists an a in (0, 1) such that

( i ) {T > 0: A(Γ, I/I*) ^ 1 - α} = U ^ K , 6J wΛere bn < an+1

and lim^oo αn = lim^^ 6Λ = ^ .
(ii) {α%+1/6%} is cm unbounded sequence.

Then f is not an extreme point of

REMARK. The hypotheses of the theorem essentially mean that
if A(T, 1/1*0 stays below (1 — a) infinitely often and long enough,
then / is not an extreme point of S(^fp(R)). A simple example of
such / is provided in the proof of Proposition 2.5. We also note
that conditions (i) and (ii) are equivalent to: there exists an a in
(0, 1) such that no sequence {Tn} will satisfy lim%_TO Tn = oo, {Tn+JTn}
is bounded and lim%_co A(Tn, \f\p)>l- a. (Compare this with The-
orem 3.8.)

Proof. Without loss of generality we assume that | [ / | | = 1.
Also, by passing to a subsequence, we assume that for each n,
there exists a Te[an,bn] such that A{T9 \f\p) ^ 1 - a/2 and that
limn^an+1/bn - oo. uc% = sup{Γe[α n , δ j : A(T, \f\p) - 1 - α/2}, then
for all T in [cn, δΛ], A(Γ, \f\p) S 1 - α/2. Define B - U?=i B% where
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Bn = [ — bnt — c j U [cn, bn]. We will consider the following two cases:
( i ) Suppose lim^eo A(bn, \fXBJ

p) = 0. This implies that there
is a subsequence {bnjc} such that l im^^ A(bnjc, \fXBnk\

p) — 0 and yet an-
other subsequence {bnje,} of {bnje} such that l i n v ^ A(bnjt,9 |/%uj'2?n.Ίp=0.
In order to dispense with cumbersome notation, we assume that
{nk,} = {n} and by adjusting a zero function in ^£fp{R)9 we assume
that f%unBn = 0. Hence /XBn — 0 for each n and

A(cn, \f\η = 1 - f and = 1 - a .

Subtraction yields that

(K - cn\ = :

V bn I 2-a

Let 0 < ap < 1/2(2 - a), we claim that A(Γ, | / ± aXBJ
p) ^ 1 +

l/2(bjan+1) for all ϊ 7 > 0. This is clear if 0 < T S en. For en < T ^ δ%,
we have

— en

^ 1 .

A similar proof shows that A{T,\f± aXBJ
p) ^ 1 for bn ^ T < an+1.

If αn + 1 ^ T, then

+
a

n+1

and the claim is proved.
Choose a subsequence {%} of {n} with % = 1 and nh+1 such that

for T > nk+1,

Let g = Then ge and l im^^ A(T,
apa/(2 — α) > 0. Given T > 0, then nk< T < nk+1 for some fc and

/ ± alBnk\
prp + A

oβ



ON THE BANACH SPACES OF FUNCTIONS WITH BOUNDED UPPER MEANS 163

This implies that timτ^A(T, \f±g\p) = l with g Φ 0. Hence / is
not an extreme point of S(^fp(R)),

(ii) Suppose lim*-*, A(bn, \fXBJ
p) > 0. Let 0 < α < 1 be such

that 0 < ] (1 ± a)p — 1 ] < a/2. For each n, we claim that

2 α n + 1

Indeed, if cn ^ T ̂  α n + 1 , we have

A(Γ, | / ± α / Z ^ Π ̂  A(T, \f\p) + |(1 ± a)p - 1 | ^ Γ | / Z 5 J
Δl J—T

If oH+1 ̂  Γ, then

A(T, \f± afXBn\η ^ 1 + \(l±aY -
an+1 2bn ) - κ

2 aJI+l

This proves the claim. The same a r g u m e n t as in the last p a r a g r a p h
of p a r t (i) enables us t o derive a contradiction by choosing age

w i t h ||fir|| Φ 0 and ] ] / + g\\ ^ 1.

THEOREM 3.11. The set S(^£"-(R)) contains no extreme points.

Proof. Let fzS(^£\R)) with | | / | | = 1, Bι = [-TltT1] where

\ I /1 = 1 and let B%+1 = [ - Tn+1, Tn+ι]\[ - Tn, Tn] where \ | /1 = 1.

It is easy to show that ΓΛ-> <*>. Let ̂  = l/2(ZUjBj!ft+1 — l^^Jf. Then
||flr|| = 1/2. For any Γ, Tn^T < Tn+1 for some w, it follows from
the construction that

\A(T, \ f ± g\) - A ( T , 1/1)1 ̂  ^

Hence | | / ± flr|| ̂  1 and / i s not an extreme point of

4* IP(R)* and ikf^iί)** Let if be a topological space and let
C(K) denote the set of bounded continuous functions on K. Let
rca (K) (rba (K)) denote the set of countably (finitely, respectively)
additive, bounded regular Borel measures on K. From the Holder
inequality we obtain this result.

PROPOSITION 4.1. Let 1 < p, q < oo and 1/p + 1/q = 1. Let
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ψeMg(R) and μerca[ l , <*>). If I: IP(R)~>C is defined by

(4.1) <Z, /> - j " A(T, fψ)du(T) , fe P(R) ,

then leIp(R)* and

In this section, we will consider the converse of Proposition 4.1,
i.e., can each leIp(R)* be represented by (4.1)? For l<p< oo,
let Kp = [1, oo) x S(Mq(R)), 1/p + 1/q = 1, be equipped with the
product topology.

LEMMA 4.2. Let 1 < p < oo. J^or eαcfe feMv(R), define f as

?(T9φ) = A(T,fφ), (T,φ)eKp.

Then ~ is α^ isometric isomorphism from MP(R) into C(KP).

Proof. The Holder inequality implies that

\f(T, φ)\ = \A(T,fφ)\ <Ξ A(T, \fn» A{T, \φ\T« S A(T, | / | T P

Hence \\f\\C{Kp) ^ ||/IU?(«) On the other hand, by taking φa =
, we have

ll/llc(iβ, ^ sup^(Γ,/,ί0) = sup^(Γ, I/IT* = II/1U«>
i£T

Henceforth we will not distinguish / and /, feMp(R). For a
normal topological space if, we will use β(K) to denote its Stone-
Cech compactification. It is known that every bounded continuous
function on K has a unique norm preserving extension to β(K).
Hence one can identify C(K) and C(β(K)). This identification induces
an isometric isomorphism from rba (K) onto rca (β(K)). For each
μ e rca (β(K)), if we let v(E) — μ(E) where E is a Borel subset in

K, then ye rba (if) and [ fdv=\ fdu for all feC(K), where /
JK Jβ(K)

is the extension of / on β(K).

LEMMA 4.3. Let 1 < p < oo and let I be a norm attaining func-
tional in MP(R)*. Then there exists a ψe S(Mq(R)) and a positive
μerbafl , oo) such that \\μ\\ = \\l\\ and

(I, /> = j A(T, fψ)dμ(T) V/6 M%R) .
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Proof. We will identify MP(R) as a subspace of C(β(Kp)) ( = C(KP))
and assume that | | ϊ | | — 1. The Hahn-Banach theorem and the Riesz
Representation theorem imply that there exists a v e rca (β(Kp))
such that \\v\\ = 1 and

<h /> = ί ΛT, Φ)dv(T, φ) , fe MP(R) .
Jβ(Kp)

S u p p o s e t h a t I a t t a i n s i t s n o r m on g e S(MP(R)), i . e . , <Z, g) = \\g\\ =
\\l\\ = 1, a n d l e t

B = {(T,φ)eβ(Kp): \g(T,φ)\ = 1} .

Note that v vanishes outside B. For each (T, φ)eBf there exists a
net {(Tr, φγ)} in Kp which converges to (Γ, ψ). Let ^ = {g^^sgng.
Then limr \A(Tϊy gφr)\ = 1 = limr A(Tr, gψ). By the uniform convexity
of 2/([— Tr, Tr], dx/2Tr) (note that each Lq has the same modulus of
convexity) and Lemma 2.1, we conclude that limr A(Tr, \ψ — φγ\

q) — 0.
This, combined with the Holder inequality, implies that limr A(T7, fφr) =
\\mrA(Tγ,fψ) for all feMp(R), and hence f(T, φ) = f(T, ψ) for all
feMp(R), (Γ, φ)eB. Now, for any feMp(R),

K U Π = ί f(T, φ)dv(T, φ)
JB

£\\v\\. sup {\f(T,φ)\: (T,φ)eB}

t ) | : (TyΦ)eB}

If τ(/) = sup{|/(T,t) | : TeR+}, feC(β(Kp)), r is a nonnegative,
positive homogeneous subadditive functional. An application of the
Hahn-Banach theorem yields a norm preserving extension, μ e
rca (β(Kp))> of Z such that | <β, /> | ^ r(/) for all / in C(β(Kp)). It
follows that ||/Z|| = 1 and μ is supported by β[l9 oo) x {o/r}. By
letting ^(£7) = /2(2£ x {̂ }) for each Borel subset E of [, oo)

<Z, /> - J" A(T, fψ)du(T) VfeMp(R) .

The fact t h a t μ is positive follows from \\μ\\ = 1, | | ^ | | = l and

\~A(T,\g\')dμ(T) = l.

Let K be a topological space. For each μ e rba (if )> £* can be
decomposed as μ — μx + μ2 where μλ e rca (K) and /̂ 2 is purely finitely
additive, i.e., if 0 ̂  v ^ |μ2 | and v erca (Z"), then u = 0. Note that
μ2 vanishes on compact sets of K.



166 KA-SING LAU

COROLLARY 4.4. Let 1 < p < °o and let I be a norm attaining
functional in F(R)*. Then there exists a ψ e S(Iq(R)) and a positive
μercafl , °°) such that \\μ\\ — \\l\\ and

<Z, /> = j A{T, fψ)dμ(T) V/G

Proof. Let ί 6P(R)* with ||l1| = 1 and let g e S(P(R)) such that
(I, Sf) = II #11 = l|ϊ|| = 1. If ψ = l ^ l ^ s g n ^ and I is the norm pre-
serving extension of I on MP(R), then by Lemma 4.3, there exists
a positive μ ε r b a [ l , ©o) such that | |Γ|| — \\β\\,

<Γ, /> = Γ A(Γf fψ)dμ(T) V/G ΛΓ'(Λ) .
Jo

Let μ = μ + μ' where μ e rca [1, c>o) and μ' is purely finitely additive.

Note that Γ A(T, fψ)dμ' = 0 for all / in P(R) and we have

(I, /> - j " Λ(Γ, ff)dμ(T) V/G

Since H l̂l ̂  1 and j A(T, \g\p)dμ(T) - <Z, ̂ > - | |^ | | - 1, it follows

that the norm of μ is 1. This completes the proof.

Since S(P(R)) contains no extreme point (Proposition 3.7), it
follows that F(R) is not a dual space. However, the above corollary
implies the following more interesting result.

THEOREM 4.5. For Kp < oo, p(R)** = M*{R).

Proof. Let σ be the weak topology on MP(R) induced by
J%β)*. We will show that: (i) For each feMp(R), \\f\\ =
sup{<£,/>: leS(P(R)*)}; (ii) P{R) is σ-dense in MP(R); (iii) Every
bounded net in P(R) has a ^-convergent subnet in MP(R). It then
follows that P(B)** - MP(R).

To prove (i), we let feMp(R) with | | / | | = 1. Let ε > 0 and
suppose that To satisfies A(T0, \f\p) > 1 - ε. Let ψ = l / l ^ s g n /
and let μ = δΓo, the point mass measure at TQ. If l0 is the func-
tional defined by ψ and μ as in Proposition 4.1, then

1 - ε fg <Z0, /> ^ sup {<ί, />: ί G S(i*(Λ)*)} .

Conversely, if D is the set of norm attaining functionals in S(F(R)*),
then the theorem of Bishop and Phelps [5] implies that D is dense
in S(P(R)*). Corollary 4.4 implies that each I e D can be represented
in terms of ψ e S(Iq(R)) and a positive μ e rca (R+). Hence
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<ϊ, /> = j A(T, fψ)dμ <£ \ A(T, \ψ\ψ«dμ ̂  1 .

By taking the supremum of the left hand side, part (i) follows. To
prove (ii), let feMp(R) be given. For any leS(P(R)*) and for any
e > 0, choose V eD such that \\l — V\\ <* ε/||/||, where V is represented
by μ and ψ as in Corollary 4.4. There exists a compact set K in
R+ such that μ(R+\K) < ε/| \ f \ |. If /* = /• Z x u <_*>, then /* 6 P(R) and

\£\<ι, f>-<ι\ f>\+\<i', f>-<i', fκ>\+\(i', fκ>-<ι, fκ> I

A(T, (f-fx)ψ)dμ + ε

To prove (iii), let {/α} be a net in S(P(R)). For each n, the weak
compactness of Lp[—n, n] and an application of the diagonal method
imply that there exists a subnet {fβ} of {/α} and a locally Lp func-

tion /such that fr^i-nM >f'^ί-Mi for each ^. Since A(T, \fβ\
p)^lt

it follows that A(T,\f \p) ^ 1 and therefore fe MP(R). The dominated
convergence theorem yields that

lim\~A(T,(fβ-f)Ψ)dμ = 0
β J l

for any φeMg(R) and μerca(l?+). Corollary 4.4 and the density of
D in S(/P(iί)*) imply that {/̂ } converges to / in the σ-topology.

THEOREM 4.6. Let 1< p < oo and let leP(R)*. Then there
exists a ψe S(MQ(R)) and a positive μ e rca [1, oo) such that \\μ\\ = \\l\\
and

<I, /> = Γ A(T, fψ)dμ(T) V/e P(R) .
Jl

Proof. Since M*(R) = P(R)**, there exists a geS(Mp(R)) such
that (I, g) = ||Z||. Let ψ = l^r^-'sgn^ and let I be tlje norm pre-
serving extension of I on MP(R). By Lemma 4.3, there exists a
positive /Ierba[l, oo) such that I can be represented by μ and ψ.
The same argument as in Corollary 4.4 yields

V/e

where jW is the countably additive component of μ9 μ is positive and

THEOREM 4.7. For 1 < p < oo, Λr»(Λ)* =
+ Ml = IIMI + l i y for keP(R)* and l2eI"(R)\
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Proof. Since MP(R) = I'(R)**, it follows that M'(R)* = IP(R)* φ
IP(R)L. To prove the second assertion, we may assume that \\l.\\ =
||2,|| = 1. For ε > 0, choose f.ePiR), f2eW(R) such that (lt, /,> ^
1 - ε and | |/; | | = 1. Note that

Without loss of generality, assume that supp / ! £ [ — α, α] for some
α > 0 such that μ(R\(a, oo)) < ε where μ is the measure in the
representation of ^ and

Xfi* for all Γ > α .

= / 1 + / 2 . Z J l ^ β f β j . Then 11/11 = su P l ^A(Γ, \f\>Y»£l + e. The
fact that <Z2, g) = 0 for all # e ΛfP(Λ) with compact support implies
that

(k + lif /> ^ «^, /x> - ε) + <Z2, /2 lR/[-aiai)

= <ϊi,Λ> + < ^ / 2 > ~ ε

^ 2 - 3ε .

It follows that U^ + Z2|| |Ξ> (2 — 3ε)/(l + ε) and since ε is arbitrary,
ll̂ i + 1̂1 = 2. This completes the proof.

5* Representation of ^/ίv{Rf. A finitely additive measure
μerba[ l , oo) is said to be concentrated at oo if μ{E) = 0 for any
measurable subset E contained in a finite interval. It is easy to
show that for l<p< oo, if <fe^q(R), μerba[ l , oo) and μ is
concentrated at oo, then

<i, /> - £ A(Γ, fψ)dμ(T) V/e ^

defines a functional on ^P(R). We will show that every norm
attaining functional on ^V{R) is of this form.

Recall that ^P(R) is isometric isomorphic to MP(R)/P(R) (Propo-
sition 2.4). This implies that ^v{Kf is isometric isomorphic to

LEMMA 5.1. Let Kp< oo. T/̂ w /or eαcfc feMp(R)/Ip(R),
there exists an feMp(R) such that | | / | | = | | /H.

Proof. Theorem 4.7 implies that IP(R) is an ikf-ideal [1] in MP{R).
Hence it is a proximinal subspace of MP(R), i.e., for each feMp(R),
there exists age IP(R) such that

--fc||: heIp(R)}.



ON THE BANACH SPACES OF FUNCTIONS WITH BOUNDED UPPER MEANS 169

It follows that each feMp(R)/P(R) is the image of an feMp(R)
such that H/ll = 11/11.

THEOREM 5.2. Let 1 < p < °° and let I be a norm attaining
functional on ^€P(R). Then there exists a ψ e ^fg(R), 1/p + 1/q — 1,
and a positive μ e r b a [ l , °o) which is concentrated at °° such that

(I, /> - J" A(T, fψ)dμ V/e

Proof. We will assume that | |Z|| = 1. The identification of
^p{Rf and IP{R)L, and Lemma 5.1 enable one to assume that
leIp(RY and I attains its norm on a geS(Mp(R)). Recalling the
notation and proof of Lemma 4.3, we claim that for (T,ψ)eB, if
{(Tr, φγ)} is a net in Kp which converges to (T, φ)9 then limr Tγ = <>o.
This holds, since if not, there is a subnet {Tα} such that limα Ta =
Γo < co. if ^ = g . χΛN[_nfll], then <ί, gn) - <ί, ̂ > = 1 (for I e IP{RY).
This implies that \gn(T, ό)\ = 1. But for -̂  > Γo, there exists an a0

such that for α > a09

\gn{Ta, φa)\ £ A(Ta, \gn\
prp.A(Ta> \φa\*y« - 0 .

Hence \gn(T, ψ)\ — 0. This is a contradiction and the claim is proved.
It follows that one can show that

(5.1) I <l, /> I <£ ΪIΞ I f(T, ψ) I VfeM'(R) .

Moreover, using the proof of Lemma 4.3, one can find a μ 6 rba [1, oo)
such that

(5.2) <l, /> - j " A(Γ, /t)dM^) VfeMp(R)

with /̂  positive and | | i | | = | | ^ | | . Inequality (5.1) clearly implies that
μ is concentrated at oo. By considering (5.2) with fe^tp(R), we
have fe^£q(R) such that

, f1r)dμ(T) V/e ^ * ( Λ ) .

COROLLARY 5.3. Lei 1 < p < <>o and let X be a closed subspace
of ^fp(R). Then there exists a norm dense subset D in X* such
that each leD can be represented as in equation (5.2).

Proof. Let D be the set of norm attaining functionals in X*.
Let leD. By the Hahn-Banach theorem, I can be extended to a
functional I in ^P{R)* with || Γ|| = ||Z|| and ίa lso attains its norm.
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The representation of Ί on ^//V(R) will give the representation for
I on X.

We are unable to represent every functional I in ^£rp{RY as in
(5.2). However, if we consider the subspace

the space of ^fp'-regular functions, a complete representation can
be obtained. The method is due to Cwikel [7, Erratum].

LEMMA 5.4. For 1< p < oof let feM?(R), φeM?(R) and sup-
pose that \S - T\ < 1. Then \A(T, fφ) - A{S, Tφ)\-+Q uniformly as

Proof. The lemma follows from the following inequality:

\A(T,fφ)-A(S,fφ)\

THEOREM 5.5. Let 1 < p < oo and let le^f/{R)*. Then there
exists a positive μerba[ l , oo) which is concentrated at oo and a two
variable Borel measurable function ψ(T, x) such that for each fixed
T, f(T, ) e ^ 9 C β ) and

(5.3) (I, /> = J (A. ̂ / ( ^ ( Γ , »)ίίx) djκ(D V/6

Proof. Let Im = [m, m + 1), m ^ 1, and partition Im into
2m + 1 disjoint consecutive subintervals ElίW, , E2n,+ltm. If JE7Λ =
U»2sn(^2n,» U (—E2n>m)), then {ϋ/J is a disjoint sequence of sets.
Applying the notation and proof as in Lemma 4.3 and Theorem 5.2,
with Mΐ(R) in place of MP(R), we have for each norm attaining func-
tional I on ̂ £P{R), there exists a geS(M?(R)) such that (I, g) = \\l\\
and

\(l,f>\ rgHm|/(r,0) | = I ί m | / ( Γ , ^ ) | XEn VfeM?(R)

where φ = {g^sgng (the last equality follows from Lemma 5.5).
Hence we can choose a representation of I with φeM?(R) and a
verbafl, oo) which is supported by En and concentrated at oo.
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Now, for any I e *s/%*(R)*, let {ln} be a sequence of norm attain-
ing functional which converges to ί. Suppose that the ln's are
represented by (5.2):

<ln, /> = j ~ A(T, fψn)dvn(T) V/e M'(R) ,

where ψneM?(R) and vn is supported by En and is concentrated at
°o. If one defines

Then it follows that

<ι"f} = Γ (~if S τf{x)ψ{τ>x)dx)dVn{T) vfe m{R)

The weak compactness of the unit sphere of rba [1, co) allows one
to assume μ is a w*-limit point of {vn} and hence

, x)dxj dμ{T) V/e M?(R) .

It follows immediately that μ is concentrated at °o and μ is positive.
By considering Z e ^ % R ) * , we have ^(Γ, ) ^ ^
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